STUDENT NAME:

Linear Algebra Graduate Comprehensive Exam, August 2016 Worcester Polytechnic Institute

Work out at least 6 of the following problems Write down detailed proofs of every statement you make. No Books. No Notes. No calculators.

1. Show that zero is an eigenvalue of the following matrix:

1	0	0	0	0	0	0	0	0	-1 -
0	1	0	0	0	0	0	0	0	-1
0	0	1	0	0	0	0	0	0	-1
0	0	0	1	0	0	0	0	0	-1
0	0	0	0	1	0	0	-1	0	0
0	0	0	0	0	1	0	0	-1	0
0	0	0	0	0	0	1	0	-1	0
0	0	0	0	-1	0	0	2	-1	0
0	0	0	0	0	-1	-1	-1	4	-1
-1	-1	-1	-1	0	0	0	0	-1	5

What is its multiplicity? Does the matrix have nonzero eigenvalues? If so, compute their product. If not, explain why not.

- 2. Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and for every $k \in \mathbb{N}$, denote by L^k the composition of L with itself k times.
 - (i) Show that for every $k \in \mathbb{N}$, one has

$$Range(L^{k+1}) \subseteq Range(L^k)$$

(ii) Show that there exists a positive integer m such that for all $k \geq m$ one has

$$Range(L^k) = Range(L^{k+1})$$

(iii) For m as in (ii) set $W = Range(L^m)$. What can you deduce about the restriction of the map L to the subspace W?

3. For every two continuous functions $f, g \in C(\mathbb{R})$ define their product to be

$$\langle f,g\rangle := \int_{-1}^{1} f(x)g(x)dx.$$

Show that this defines an inner product on the space of all continuous functions $C(\mathbb{R})$.

4. Consider the space V_3 of polynomials with real coefficients of degree at most 3. Find a basis for V_3 such that

(i) every element of the basis satisfies p(1) = 1

(ii) any two elements in the basis have different degrees

(iii) any two elements in the basis are orthogonal with respect to the scalar product introduced in the previous problem.

- 5. Consider $T : \mathbb{P}_3 \to \mathbb{P}_1$ defined by second differentiation, i.e., by $T(p) = p'' \in \mathbb{P}_1$ for $p \in \mathbb{P}_3$. Find the matrix representation of T with respect to the bases
 - $\{1 + x, 1 x, x + x^2, x^2 x^3\}$ for \mathbb{P}_3 and $\{1, x\}$ for \mathbb{P}_1 .
- 6. Consider the following matrix

$$A = \frac{1}{2} \begin{bmatrix} 0 & -3 & 0 & 1 \\ -3 & 0 & -1 & 0 \\ 0 & 1 & 0 & 5 \\ -1 & 0 & 5 & 0 \end{bmatrix}$$

(i) Find the transformation matrix M, and its inverse, such that $J = MAM^{-1}$ is the Jordon canonical form of A.

(ii) What is the characteristic polynomial of the matrix A?

(iii) Find all possible Jordan canonical forms of a matrix with the same characteristic polynomial as A.

- 7. Consider the system Ax = b, where A is $m \times n$ with m < n and $\operatorname{rank}(A) = m$.
 - (i) Describe the set of all solutions of the system.
 - (ii) Show that (AA^T) is nonsingular.
 - (iii) Show that $A^T (AA^T)^{-1} b$ is the minimum-norm solution of the system.